
Chat Diamond

The Cowboy

June 25, 2023

Contents

1 Introduction 2
1.1 Chat Window . 2
1.2 Emoji Window . 3
1.3 Console Window . 4
1.4 Configure Window . 4
1.5 More Pages . 5

2 Installation 5

3 Version Histroy 7

4 A note on UT Messaging 8
4.1 A minor PhD on console messages 9

5 Native Coding 10
5.1 Why Native Code? . 12
5.2 Build System . 12

5.2.1 UT and CMake . 14
5.3 C++ for UT . 16

A Messaging Tables 21

B Aggregation 21

C #pragma pack 23

BIG FAT NOTE: Chat Diamond is in development stage. Please embrace
yourselves for unexpected features and bugs here and there punctuated by ac-
cessed none type of logs. If possible please raise an issue at GitHub!

1

https://github.com/ravimohan1991/ChatDiamond/issues

1 INTRODUCTION 2

Figure 1: Chat Diamond 0.8 Chat.

1 Introduction

Chat Diamond (version 0.8) is a purely client-side mod for Unreal Tournament
G.O.T.Y (UT99) which replaces the default UT console with a more appropriate
one. This functionality allows the achievement of the following

� Gathering of raw messages delivered to the console and relevant catego-
rization, along with chat message separation, of them.

� Introduction of appropriate web-query for translation to local or demand
of the language.

1.1 Chat Window

Figure 1 shows the current form of the chat window. The following features are
supported

� Display of sender’s avatar face.

� Static emojis and animated emotes.

� Display of Date and Time (long format for now).

� Display of the Server name for reference purposes.

1 INTRODUCTION 3

Figure 2: Chat Diamond 0.8 Emojis.

� Ability to copy text and IP address (both game and web server) from chat
messages.

– IPs of the format xxx.xxx.xxx.xxx are considered web server IPs.

– IPs of the format xxx.xxx.xxx.xxx:xxxx are considered game server
IPs.

� Ability to display hyperlinks with clickable feature for relevant navigation
and mouse cursor distinction.

– On clicking web or game server IP, the player can reach the relevant
website (http:// only) or UT99 game server.

– On clicking http://something.com or https://something.com, the player
can reach the desired site, if valid URL is posted.

1.2 Emoji Window

In order to display complete list of supported emojis (and emotes), collectively
called Emos, the Emoji window 2 (which was texture based for UT Chat) has
been written almost completely in unreal script (save the textures). This allows
the support for the following

� A curation of selection page for framed Emos.

1 INTRODUCTION 4

Figure 3: Chat Diamond 0.8 Console.

� An interactive way of display, which depresses the frame being hovered
with a sound and generates a distinct clicking experience.

� Emoji and Chat window text areas are synced, meaning, whatever you
write or select in one window, which gets registered in the text area, is
copied over to the next one.

� My personal favorite, the scrolling capability.

1.3 Console Window

The console now has the following features

� Non-chat filter to filter out server or mutator advertisements, in the con-
sole. Although SmartCTF cover and seal messages may also get filtered.

� Event filter censors death messages corresponding to the weapon used.

� A clear button to clean or reset the console.

� A working status bar linked with console configuration modifiers.

1.4 Configure Window

Chat Diamond provides “real time way” to configure various user configurable
parameters (figure 4). This implies instant relevant experience on toggling or

2 INSTALLATION 5

tuning those parameters, for instance tuning the RGB values for background
color of Public Chat window and Console window results in the relevant change
in the background of Configure Window itself. Allow me to provide relevant
details for configurations

� Background Color : Set the RGB values to come up with a gradation color
for backgound. The setting can be instantaneously applied to Public Chats
widow and Console window

� Chat Binding : Click on the box and the key pressed next shall be assigned
for opening Public Chats window.

� Animation Speed : Real time adjustmet, by dragging the calibration slider,
as per personal taste.

� Emo Size: Real time adjustment for setting the size of emoji’s and emotes
simultaneously.

� Message Arrival Sound : Check if you want telegram style sound to be
played on message dlivery.

� Open Chat At The End : Check if you to open the chat window 1.1 when
the match ends.

� Load Messages: x is the number of messages in history that you want
Chat Diamond to load1.

1.5 More Pages

Please keep in mind that this is very initial stage of Chat Diamond (0.8). The
pages to configure various properties of chat messages and date format shall be
made available as we progress with the development cycle.

2 Installation

Chat Diamond is developed and tested with UT99, 469c client. Although the
mod should work on previous versions, I take no pains for maintaining that
code simply because I feel that we all should work towards pushing forward the
community effort in driving the game (and UE 1) towards modern experience.
So by not supporting the code for earlier versions I am supporting the later
versions.

With that being written, feel free to send pull requests to Chat Diamond
repository, even for earlier game versions.

1Chat Diamond has the capacity to store virtually all the messages without the need of
erasing history. Loading of more messages would be slow though. Optimal number is 20 - 40
after which you can start noticing the slow down. For complete history of messages, check
out ChatDiamond.txt which contains chat and relevant metadat in json strings.

https://github.com/ravimohan1991/ChatDiamond/
https://en.wikipedia.org/wiki/JSON

2 INSTALLATION 6

Figure 4: Chat Diamond 0.8 Configure.

Chat Diamond is essentially a console (and not meant for the server). So for
installation do the following

� – Linux: Place the ChatDiamond.so, ChatDiamond.ini, ChatDiamond.txt,
and ChatDiamond.u in System directory.

– Windows: Place the ChatDiamond.dll, ChatDiamond.ini, ChatDi-
amond.txt, and ChatDiamond.u in System directory.

� Open UnrealTournament.ini and find the section

[Engine.Engine]
GameRenderDevice=VulkanDrv.VulkanRenderDevice
AudioDevice=ALAudio.ALAudioSubsystem
. . .
Console=UTMenu.UTConsole
. . .

� Modify to

. . .
Console=ChatDiamond.CDUTConsole
. . .

� And that is it! You can now summon console by usual ‘∼’ key.

3 VERSION HISTROY 7

3 Version Histroy

In this section I am presenting the history of Chat Diamond for general aware-
ness.

Changelog

0.8 The Cowboy (2023-xx-xx)

Added

� Configure Window

� Several emotes

� New server join information in chat window

� Linux support

� Work flow for users to add custom emos

Fixed

� Chat Window text scaling

� Emoji Window emojitext offset (69b7abbc)

� Chat Window emo textures translucency (6e105d2c)

� Emoji Window emo frames mouse hover detection (501e5852)

� Addressed several accessed none warnings in the function Locate-
ChatFaceTexture by commit 1dda53b0

Changed

� Using json format for chat metadata, instead of “:” deliminator which
clashed with names

� Using linked lists with dynamic loaded textures to avoid loading each
frame

� Message history is non-truncable2. Number of last x messages to be
shown is configurable.

� Using text file instead of ini for dumping chat metadata (f059be81)

0.1.0-alpha The Cowboy (2022-12-25) — Initial alpha

2Meaning no need to delete messages as they are dumped in .txt file which is reservior for
virtually unlimited messages (for years to come).

https://github.com/ravimohan1991/ChatDiamond/wiki/Adding-an-Emote-in-Chat-Diamond
https://github.com/ravimohan1991/ChatDiamond/commit/69b7abbce0617ae1c2de0660379984852df9c76d
https://github.com/ravimohan1991/ChatDiamond/commit/6e105d2cce5db1380c27df546e604d0f306eccd4
https://github.com/ravimohan1991/ChatDiamond/commit/501e585250a6553ca95ca9b9d5e0ad25b1e645b5
https://github.com/ravimohan1991/ChatDiamond/blob/1dda53b01b493a2ef8be156966b3230758211254/Classes/CDUTChatTextTextureAnimEmoteArea.uc#L890
https://github.com/ravimohan1991/ChatDiamond/blob/1dda53b01b493a2ef8be156966b3230758211254/Classes/CDUTChatTextTextureAnimEmoteArea.uc#L890
https://github.com/ravimohan1991/ChatDiamond/commit/1dda53b01b493a2ef8be156966b3230758211254
https://github.com/ravimohan1991/ChatDiamond/commit/f059be817532fa720804bd20f54a36e3c82ddb9d

4 A NOTE ON UT MESSAGING 8

4 A note on UT Messaging

Chat Diamond’s functionality is based upon the tenet “A complete client side
user interface with no dependencies with the server”. This would imply con-
forming to the UT standards and any server not conforming to the standards,
if so, is not worth visiting.

Based upon the above motivation we have a choice to make between replacing
the client HUD or UT console, in order to gather the UT messages client side.
My first instinct was to replace the HUD because that would give more precise
classification of the messages, in the sense Epic wrote the code, like so (line
1499)

1 // Entry po int f o r s t r i n g messages .
s imulated func t i on Message (P l ay e rRep l i c a t i on In f o PRI , coe r c e

s t r i n g Msg , name MsgType)
3 {

l o c a l i n t i ;
5 l o c a l Class<LocalMessage> MessageClass ;

7 switch (MsgType)
{

9 case ’ Say ’ :
case ’TeamSay ’ :

11 MessageClass = c l a s s ’ SayMessagePlus ’ ;
break ;

13 case ’ Cr i t i c a lEven t ’ :
MessageClass = c l a s s ’ C r i t i c a l S t r i n gP l u s ’ ;

15 Local izedMessage (MessageClass , 0 , None , None , None ,
Msg) ;

r e turn ;
17 case ’ DeathMessage ’ :

MessageClass = c l a s s ’ RedSayMessagePlus ’ ;
19 break ;

case ’ Pickup ’ :
21 PickupTime = Level . TimeSeconds ;

d e f au l t :
23 MessageClass = c l a s s ’ Str ingMessagePlus ’ ;

break ;
25 }

. . .

The basic premise of many cheats providing aim assist is to modify the HUD
client side and display the adversary’s position behind the wall or a radar. This
is the reason why modern anti-cheats are not receptive of clients modifying
HUD, and thus, work with the concept of “whitelisting”.

If the notion of “cheat-anticheat” interplay exists in the UT standards, then
that simply doesn’t fit with the tenant we began with. We don’t want to be
sending request to server administrators for specifically whitelisting Chat Dia-
mond which will be reverted by cold silent treatment to say the most and some
naggy jibber jabber about the unknown-ness of Chat Diamond, especially when
the mod is not that popular.

http://uncodex.ut-files.com/UT/v436/Source_botpack/challengehud.html

4 A NOTE ON UT MESSAGING 9

So with this thinking in mind, the better option would be to replace the
client console, which I haven’t seen any decent anti-cheat prohibiting. This
not only gets the client out of hook for sending whitelisting requests but also
provides a powerful mechanism to mould the console, specifically for generic
needs (see the concept of filters)3.

4.1 A minor PhD on console messages

We start with the code

event Cl ientMessage (coe r c e s t r i n g S , op t i ona l Name Type , op t i ona l
bool bBeep)

2 {
. . .

4 i f (Player . Console != None)
Player . Console . Message (P laye rRep l i c a t i on In fo , S , Type) ;

6 i f (bBeep && bMessageBeep)
PlayBeepSound () ;

8 i f (myHUD != None)
myHUD. Message (P laye rRep l i c a t i on In fo , S , Type) ;

10 }

and

event TeamMessage (P l ay e rRep l i c a t i on In f o PRI , coe r c e s t r i n g S , name
Type , op t i ona l bool bBeep)

2 {
i f (Player . Console != None)

4 Player . Console . Message (PRI , S , Type) ;
i f (bBeep && bMessageBeep)

6 PlayBeepSound () ;
i f (myHUD != None)

8 myHUD. Message (PRI , S , Type) ;
}

It is clear that both the console and HUD should receive same messages with
no discrimination (unless if coder specifically demands, as mentioned in 4). The
console would display them, in what I would like to think, raw form. The diff,
between console and HUD, is shown in the figure 5

Please note that Chat Diamond’s console is not much different from default
UT99, visually. The changes are how Chat Diamond interprets the raw messages
thrown and utilize them in a constructive way. So this is where magic code comes
in. In order to understand that let me first demonstrate UT messaging by a
table4.

3Althought some servers may prohibit the use of custom consoles. For that you may have
to specifically send the whitelist request. You may want to report the relevant console class,
which, for Chat Diamond, should be “ChatDiamond.CDUTConsole”.

4 The “messages” for instance: ‘plushie was smacked down by Mental Instituitions’s Rocket
Launcher’, are actually strings which can be seen in the line 117 of the code. This also shows
how some death messages can be suppressed in the console thus differing from HUD.

http://uncodex.ut-files.com/UT/v436/Source_engine/playerpawn.html
https://github.com/ravimohan1991/ChatDiamond/blob/859323fbd80266b21c9dab163b067cacfa318463/Classes/CDUTConsole.uc#L52-L71
http://uncodex.ut-files.com/UT/v436/Source_botpack/deathmessageplus.html

5 NATIVE CODING 10

Figure 5: UT99 HUD with Chat Diamond console

The mapping to relevant arguments is like so in Table 2.
The tables need to be explained and pondered.

5 Native Coding

Chat Diamond is a native mod, meaning, a program invoking C++ functions.
At the time of writing, minor usage of the library regular expressions is (or
should be) evident from the following code

1 nat ive f i n a l s t a t i c func t i on s t r i n g SpitIpFromChatString (s t r i n g
Message , out i n t ICategory) ;

To understand the implementation of the above unreal script function, please
see the code displayed as follows

1 void ACDDiscordActor : : execSpitIpFromChatStr ing (FFrame& Stack ,
RESULT DECL)

{
3 guard (ACDDiscordActor : : execSpitIpFromChatStr ing) ;

P GET STR(Message) ;
5 P GET INT REF(IPCategory) ;

P FINISH ;
7

std : : smatch Match ;
9

// The n i c e way out , from game and web s e r v e r mix , seems to make
an assumption that , in context o f UT, the gameserver IP

11 // be g iven by complete port number .

13 // https : // github . com/ravimohan1991/ChatDiamond/ i s s u e s /1#
issuecomment=1356906185

std : : regex GameIPMould(”\\d{1 ,3}\\ .\\d{1 ,3}\\ .\\d{1 ,3}\\ .\\d
{1 ,3}\\ :\\d{1 ,4} ”) ;

15 std : : regex WebIPMould(”\\d{1 ,3}\\ .\\d{1 ,3}\\ .\\d{1 ,3}\\ .\\d{1 ,3} ”
) ;

17 std : : wstr ing WString (*Message) ;

https://en.cppreference.com/w/cpp/regex
https://github.com/ravimohan1991/ChatDiamond/blob/6e3b684403fb75811c1cde6372c9125370bc796a/Classes/CDDiscordActor.uc#L61
https://github.com/ravimohan1991/ChatDiamond/blob/6e3b684403fb75811c1cde6372c9125370bc796a/UTNativeEssentials/ChatDiamond/Src/ChatDiamondNative.cpp#L52

5 NATIVE CODING 11

std : : s t r i n g SampleStr ing (WString . begin () , WString . end ()) ;
19

std : : s t r i n g IPStr ing ;
21

// Look f o r game IP
23 i f (s td : : r e g ex s ea r ch (SampleString , Match , GameIPMould))

{
25 f o r (auto Tempo : Match)

{
27 IPStr ing = Tempo . s t r () ;

break ;
29 }

}
31

i f (! IPStr ing . empty ())
33 {

std : : wstr ing WideIPString = std : : wstr ing (IPStr ing . begin () ,
IPStr ing . end ()) ;

35 * IPCategory = 0 ;
*(FStr ing *) Result = WideIPString . c s t r () ;

37 r e turn ;
}

39

// Look f o r game IP
41 i f (s td : : r e g ex s ea r ch (SampleString , Match , WebIPMould))

{
43 f o r (auto Tempo : Match)

{
45 IPStr ing = Tempo . s t r () ;

break ;
47 }

}
49

i f (! IPStr ing . empty ())
51 {

std : : wstr ing WideIPString = std : : wstr ing (IPStr ing . begin () ,
IPStr ing . end ()) ;

53 * IPCategory = 1 ;
*(FStr ing *) Result = WideIPString . c s t r () ;

55 r e turn ;
}

57

std : : wstr ing WideIPString = std : : wstr ing (IPStr ing . begin () ,
IPStr ing . end ()) ;

59 * IPCategory = 2 ;
*(FStr ing *) Result = WideIPString . c s t r () ;

61

unguard ;
63 }

There are few remarks

� The C++ code isn’t the ordinary one. That is punctuated with variety
of macros, which generate, what I would like to call, the first hints of
reflection system.

5 NATIVE CODING 12

� In order to linearize the story of native coding and start producing practi-
cal code, we need to first learn few “game-dev” terminologies and practices.

5.1 Why Native Code?

Unreal script is a highly managed language which comes with limitations, which
is characteristic of any managed language actually, such as slow(er) runtime
(when compared with C++), ability to fuse with well defined C++ applications
(like Discord), and lack of programmers’ choice or taste. Don’t get me wrong,
the language is best for what it does, scripting mods for the game. Since this is
2020 decade, along with native support, there should be no 2000’s environment
limitation, especially with the new community patches.

5.2 Build System

I have been using combination of Wot Greal (unrealscript code) and Microsoft
Visual Studio 2022 (C++ code) IDEs for developing Chat Diamond. Therefore
I have organized the repository with the conforming hierarchical structure 6.

What we have achieved by doing so is a reconciliation of UT99’s unreal script
modding environment with C++ dev environment yielding a version controlled
(a Github repository) avidity with UT’s root folder. All the C++ code goes
to the folders marked with, well, C++ and unreal script code goes to top level
ChatDiamond \Classes directory.

The Core is the directory containing “header-only” library elements, mean-
ing .h files and the already compiled binary Core.lib. Few remarks are to be
worded

� Such libraries, which are prebuilt and whose implementation is hidden
with only headers (the API) visible, are known as “Interface” libraries
in CMake’s scope. Engine is another example of directory containing such
Interface library. Also both of the Engine and Core directories contain
the directories Inc, Src, and Lib sub directories.

� From research, Core.lib and Engine.lib, which are static libraries, seem to
be the “basic necessities” for linking with a native mod.

� In the hierarchy, I am only showing the top level CmakeLists.txt. If you
are familiar with the build utility, you can comprehend the presence of
one each inside ChatDiamond, Core, and Engine directories.

� Currently, I am developing on and for Windows (should be evident from
GenerateProjectFiles.bat). It goes against my philosophy of cross-platform
development5 given the 32-bit jugaad for Linux libraries, I may do some-
thing in future. MacOS seems like a workable goal since I own a MacBook
Pro.

5For solid enough work please see Karma.

https://github.com/ravimohan1991/ChatDiamond
https://github.com/ravimohan1991/KarmaEngine

5 NATIVE CODING 13

UnrealTournament

ChatDiamond (repository)

Classes

Sounds

Textures

UTNativeEssentials

ChatDiamond

Inc(C++)

Src(C++)

Core

Engine

CamkeLists.txt

GenerateProjectFiles.bat

System

UnrealTournament.exe

UCC.exe

Figure 6: Chat Diamond project hierarchy.

5 NATIVE CODING 14

Make sure that your machine has CMake installed. For uninitiated program-
mers (in my POV read premakers), let me supply a crash course on CMake, for
our purposes here.

5.2.1 UT and CMake

In a C++, or any good programming language, there is a proper tool-chain
which pipes the human written code to Turing machine understandable arrange-
ment of bits (zeroes and ones). This usually involves lot of garbage intermediary
files which most of the part are useless, unless you suddenly, out of the blue,
decide to do scavenging some day.

The responsibility of a good build system is to understand such redundancies
and provide a manageable way of dealing with chunks of huge memory files. Let
me demonstrate by simple logistics.

At the time, the Chat Diamond C++ component has about three to four
MB worth of code files (.h and .cpp). Visual Studio 2022 generates a solution
build of about 144 MB worth of memory and the output is ChatDiamond.dll
which is about two MB. The intermediary files are for IDE’s (Visual Studio for
instance) and compiler (MSVC or Clang) use only and therefore should be dealt
separately by a decent build system6.

Given the variety of compilers, with even more variety of platforms, CMake is
the most suitable build system and friend that a programmer can, well, make and
use. Along with the clear distinct folder generation for intermediate files, CMake
comes with high degree of configurability, required for build, and compatibility
with known compilers7. CMake supports the Windows, Unix, and Linux based
platforms.

UT99 was officially released and supported on multiple platforms. The com-
munity clearly intends on keeping that flame intact. Therefore a rocket scientist
isn’t really needed to gauge the obvious link between UT and CMake.

With enough convincing we are now in a position to understand the organi-
zation of this project (or some UT project organization, in general). This may
serve as a template. Consider the hierarchy 6. Then the code

1 ###################
Link D i r e c t o r i e s

3 ###################
l i n k d i r e c t o r i e s (ChatDiamond Core/Lib Engine/Lib)

5

###
7 # Target De f i n i t i o n s / Custom Modding S tu f f
###

9 add subd i r ec to ry (ChatDiamond)
t a r g e t i n c l u d e d i r e c t o r i e s (ChatDiamond

6Actually this is the reinforcement of the concept of Universal Turing Machine. That a
good compiler should be able to generate same set of instructions, i.e. a program, which
should behave that same way, no matter a laptop or desktop or smart phone. Please see
von-Neumann architecture for a lucid connection between Universal Turing Machine concept
and PCs or Macbooks.

7For a comprehensive list, please visit here.

https://cmake.org/
https://github.com/ravimohan1991/ChatDiamond/blob/f7950b2591b93a54600459ec58d7ddf57fe9218d/UTNativeEssentials/CMakeLists.txt#L201-L216
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://cmake.org/cmake/help/latest/manual/cmake-compile-features.7.html

5 NATIVE CODING 15

11 PRIVATE
${CMAKE CURRENT SOURCE DIR}/Core/ Inc

13 ${CMAKE CURRENT SOURCE DIR}/Engine/ Inc)

15

######################
17 # Target Linking Rules

######################
19 t a r g e t l i n k l i b r a r i e s (ChatDiamond PUBLIC Core Engine)

becomes relevant as follows.
In line 4, we are telling CMake to generate relevant project files (for MSVC

or QTCreator) such that the linking can be done with the libraries stored in the
Core\Lib and Engine\Lib directories8.

Next from line 9 to 13, we intend to tell CMake to add the native mod
project, specified by CMakeLists.txt present in sub-directory ChatDiamond.

Next we proceed towards the file mentioned in previous paragraph (taking
a level deep plunge in the folder hierarchy). The code is

1 cmake minimum required (VERSION 3 . 0 . 0)

3 p ro j e c t (ChatDiamond)

5 f i l e (GLOB CDHEADERS Inc /* .h)

7 add l i b r a r y (ChatDiamond SHARED Src /ChatDiamondNative.cpp ${
CDHEADERS})

9 t a r g e t i n c l u d e d i r e c t o r i e s (ChatDiamond
PRIVATE

11 ${CMAKE CURRENT SOURCE DIR}/ Inc
PUBLIC

13 $<BUILD INTERFACE: ${CMAKE CURRENT SOURCE DIR}/ Inc>
$<INSTALL INTERFACE: ${CMAKE INSTALL INCLUDEDIR}>

15)

17 t a r g e t c omp i l e d e f i n i t i o n s (ChatDiamond PUBLIC ChatDiamond)

Line 3 declares the mod project name. Then we specify all the .h files
by collectively assembling them with the command file and labeling them
CD HEADERS. Then we specify the library name via add library command
in the first field, followed by the type (SHARED means dynamic library) followed
by all the source (.cpp) files. Then we mention headers so that they may appear
nicely in the project. For instance, in XCode the project ChatDiamond looks
like

Furthermore we apprise the CMake that the target, ChatDiamond library,
needs the includes of Inc and provides the same folder as API for various libraries

8Note that directories are relative to the current CMake operation directory which is ba-
sically the location of the CMakeLists.txt with above code.

https://github.com/ravimohan1991/ChatDiamond/blob/f7950b2591b93a54600459ec58d7ddf57fe9218d/UTNativeEssentials/ChatDiamond/CMakeLists.txt

5 NATIVE CODING 16

Figure 7: A Chat Diamond XCode project.

to utilize the functionality. Finally we set the public usable name, which is same,
of the library.

Now we come back to the topmost CMakeLists.txt, line 10, which can be
regarded the continuation of target include directories of the previous one.
Here we want to tell CMake to include the library directories (the basic essen-
tials) Core\Inc and Engine\Inc in our ChatDiamond project and in line 19 we
apprise CMake to link those libraries thus generating the wholesome ChatDia-
mond.dll, if we are on Windows9.

5.3 C++ for UT

We are basically in the territory of interface between unreal script and C++ for
the game UT99. Remember the C++ standard that the UT99 was written in
could have been C98 (or SO/IEC 14882:1998) and unreal script could have had
influences.

In 2022, we can be using any standard ranging from C++11 to C++20. In
CMake above, we defined the standard like so

1 s e t (CMAKECXXSTANDARD 11)

This is what we mean by “modern”, the ability to take good parts from
the standards in history of C++ evolution. With this modern approach, we
can leverage the latest XCode or Microsoft’s Visual Studio features (including
smarter intellisense) and produce the code that can and will work in future.

9On Linux based OS, the dynamic library has the extension of “.so”, which stands for
“shared object”.

https://github.com/ravimohan1991/ChatDiamond/blob/f7950b2591b93a54600459ec58d7ddf57fe9218d/UTNativeEssentials/CMakeLists.txt#L11

5 NATIVE CODING 17

First a shout out to fellas at OldUnreal (and the thread) for the native “Hello
World” tutorial and Anthrax for UDemo, a working native mod with useful UT
oriented C++ information.

With credits out of the way, let me focus upon the juice. The aim is to write
a C++ function which can be called from unreal script and which can print

1 Log : He l lo World ! S=Test , I=888

in the logs. The idea is to compile a uscript10 code (.u package) which makes
the call to native function declared within uscript like so

1 nat ive f i n a l f unc t i on bool TestFunction (s t r i n g S , i n t I) ;

written in CDDiscordActor.uc. We need to define this routine in C++, the
language the Engine is written in. That requires punctuation of .h/.cpp files
with lot of macros dedicated towards making Engine understand and adapt
to uscript capabilities (modularity, swift iteration, and prototyping functional-
ity11).

We start with the following code analysis

1 #i f ((MSC VER) | | (HAVEPRAGMAPACK))
#pragma pack (push , 4)

3 #end i f

5 #i f n d e f NAMESONLY
#de f i n e AUTOGENERATEFUNCTION(c l s , idx , name)

7 #end i f

Line 1 is preprocessor instruction which says that if I am using MSVC com-
piler and if HAVE PRAGMA PACK is set then the alignment of the aggregate mem-
bers12 is defined like so

Definition 5.1. Align structure or class members on 4-byte boundaries, or on
their natural alignment (see APPENDIX C) boundary13, whichever is less.

push is used to make the alignment contextual. Therefore you shall find the
closing counterpart like so

1 #i f ((MSC VER) | | (HAVEPRAGMAPACK))
#pragma pack (pop)

3 #end i f

10I am using unreal script and uscript interchangeably in this document.
11You can literally use notepad for uscripts if you know what you are doing.
12For revisiting the notion of members, please see APPENDIX B
13

https://www.oldunreal.com/phpBB3/viewtopic.php?f=37&t=3938
https://github.com/stijn-volckaert/udemo
https://github.com/ravimohan1991/ChatDiamond/blob/f7950b2591b93a54600459ec58d7ddf57fe9218d/Classes/CDDiscordActor.uc#L43
https://github.com/ravimohan1991/ChatDiamond/blob/f7950b2591b93a54600459ec58d7ddf57fe9218d/UTNativeEssentials/ChatDiamond/Inc/ActorNativeClass.h
https://www.ibm.com/docs/en/zos/2.1.0?topic=descriptions-pragma-pack
https://github.com/ravimohan1991/ChatDiamond/blob/f7950b2591b93a54600459ec58d7ddf57fe9218d/UTNativeEssentials/ChatDiamond/Inc/ActorNativeClass.h#L62

5 NATIVE CODING 18

Thanks to stackoverflow discussion. I don’t quite yet know the relevance to
uscript, all I can think is maybe this is UT99’s convention of dealing with the
electronics of 1999 or something. Also anth (2022) has justification like so.

Lines 5 to 7 are the instructions that seem redundant for our purposes be-
cause we haven’t used or don’t need the macro for printing the log in my fore-
seeable way.

Now we come to the actual definition of the class. As per UT’s naming
convention all actor names start with ‘A’. Hence we have

1 c l a s s ACDDiscordActor : pub l i c AActor
{

3 pub l i c :
DECLARE FUNCTION(execTestFunct ion)

5 DECLARE CLASS(ACDDiscordActor , AActor , 0 , ChatDiamond) ;
ACDDiscordActor () ;

7 } ;

Here we need to first understand the DECLARE FUNCTION and DECLARE CLASS

macros. For the former the definition is like so

1 #de f i n e DECLARE FUNCTION(func) void func (FFrame& TheStack ,
RESULT DECL) ;

where FFrame is the data structure defined like so. Anth already has full
fledged explanation about the inner working and this is how the train of C++
logic runs

� The UObject::ProcessEvent is the entry point for unrealscript code, see
the UFUnction code for instance, where the C++ routine sets a top-level
FFrame. Of course, the implementation of ProcessEvent is hidden as of
now.

� The ProcessEvent then sets up stack for uscript function parameters and
local variables.

� The function parameters are then initialized by copying values from void*

Params buffer to the top level FFrame.

� We then execute opcodes one by one using this top-level FFrame as our
uscript execution stack until we reach an EX Return opcode or until we
hit the end of the function.

Note: I don’t know what opcode is.
DECLARE CLASS is defined like so

1 // Dec lare a conc re t e c l a s s .
#de f i n e DECLARE CLASS(TClass , TSuperClass , TStat icFlags , . . .) \

3 DECLARE BASE CLASS(TClass , TSuperClass , TStat icFlags ,
VA ARGS) \

https://stackoverflow.com/questions/3318410/pragma-pack-effect
https://github.com/ravimohan1991/ChatDiamond/blob/f7950b2591b93a54600459ec58d7ddf57fe9218d/UTNativeEssentials/Core/Inc/UnBuild.h#L154-L155
https://github.com/ravimohan1991/ChatDiamond/blob/5592fef2b13305e441c1dd2b09dde7dd52ff2d83/UTNativeEssentials/Core/Inc/UnObjBas.h#L829
https://github.com/ravimohan1991/ChatDiamond/blob/5592fef2b13305e441c1dd2b09dde7dd52ff2d83/UTNativeEssentials/Core/Inc/UnStack.h#L273
https://github.com/ravimohan1991/ChatDiamond/blob/5592fef2b13305e441c1dd2b09dde7dd52ff2d83/UTNativeEssentials/Core/Inc/UnClass.h#L379
https://github.com/ravimohan1991/ChatDiamond/blob/5592fef2b13305e441c1dd2b09dde7dd52ff2d83/UTNativeEssentials/Core/Inc/UnObjBas.h#L421

5 NATIVE CODING 19

f r i e n d FArchive &operator<<(FArchive& Ar , TClass*& Res) \
5 { r e turn Ar << *(UObject **)&Res ; } \

v i r t u a l ˜TClass () noexcept (f a l s e) \
7 { Condit iona lDestroy () ; } \

s t a t i c void In t e rna lCons t ruc to r (void * X) \
9 { new((EInterna l *)X) TClass ; } \

where DECLARE BASE CLASS is defined like so

1 #de f i n e DECLARE BASE CLASS(TClass , TSuperClass , TStat icFlags , . . .
) \

pub l i c : \
3 /* I d e n t i f i c a t i o n */ \

enum { S ta t i cC l a s sF l a g s=TStat i cF lags } ; \
5 pr i va t e : s t a t i c UClass P r i v a t eS t a t i cC l a s s ; pub l i c : \

typede f TSuperClass Super ;\
7 typede f TClass ThisClass ;\

s t a t i c UClass* S t a t i cC l a s s () \
9 { r e turn &Pr i v a t eS t a t i cC l a s s ; } \

void * operator new(s i z e t Size , UObject* Outer=(UObject *)
GetTransientPackage () , FName Name=NAME None, DWORD SetFlags=0)
\

11 { r e turn S ta t i cA l l o ca t eOb j e c t (S t a t i cC l a s s () , Outer , Name,
SetFlags) ; } \

void * operator new(s i z e t Size , EInte rna l * Mem) \
13 { r e turn (void *)Mem; }

So, on macro expansion, the code takes the following nice lucid form

1 c l a s s ACDDiscordActor : pub l i c AActor
{

3 pub l i c :
ACDDiscordActor () ;

5

pub l i c :
7 void execTestFunct ion (FFrame& TheStack , void * const Result) ;

9 pub l i c :
pub l i c :

11 /* I d e n t i f i c a t i o n */
enum { S ta t i cC l a s sF l a g s = 0 } ;

13 pr i va t e : s t a t i c UClass P r i v a t eS t a t i cC l a s s ;

15 pub l i c :
typede f AActor Super ;

17 typede f ACDDiscordActor ThisClass ;
s t a t i c UClass* S t a t i cC l a s s ()

19 {
r e turn &Pr i v a t eS t a t i cC l a s s ;

21 }
void * operator new(s i z e t Size , UObject* Outer = (UObject *)

GetTransientPackage () , FName Name = NAME None, DWORD SetFlags =
0)

23 {

https://github.com/ravimohan1991/ChatDiamond/blob/5592fef2b13305e441c1dd2b09dde7dd52ff2d83/UTNativeEssentials/Core/Inc/UnObjBas.h#L380

5 NATIVE CODING 20

r e turn S ta t i cA l l o ca t eOb j e c t (S t a t i cC l a s s () , Outer , Name,
SetFlags) ;

25 }
void * operator new(s i z e t Size , EInte rna l * Mem)

27 {
r e turn (void *)Mem;

29 }

31 f r i e n d FArchive& operator<<(FArchive& Ar , ACDDiscordActor*& Res)
{

33 r e turn Ar << *(UObject **)&Res ;
}

35 v i r t u a l ˜ACDDiscordActor () noexcept (f a l s e)
{

37 Condit iona lDestroy () ;
}

39 s t a t i c void In t e rna lCons t ruc to r (void * X)
{

41 new ((EInterna l *)X)ACDDiscordActor ;
}

43 } ;

Now we come to the definition of the function done like so

1 void ACDDiscordActor : : execTestFunct ion (FFrame& Stack , RESULT DECL)
{

3 guard (ACDDiscordActor : : execTestFunct ion) ;
P GET STR(S) ; //Get the f i r s t parameter

5 P GET INT(I) ; //and the second
P FINISH ; //you MUST c a l l t h i s or i t w i l l c rash .

7

GLog=>Logf (TEXT(”He l lo World ! S=%s , I=%i ”) , *S , I) ; //Log output
and use p r i n t f format .

9 //You may a l s o use debugf (TEXT(” He l lo world ! ”)) s i n c e i t may be
e a s i e r to remember .

(UBOOL) Result = true ; // Return true to UScript , t h i s i s how you
return a r e s u l t . You ca s t your r e s u l t i n to ”Result ” ==

whatever i t may be .
11 unguard ;

}
13 IMPLEMENT FUNCTION(ACDDiscordActor , =1, execTestFunct ion) ;

Most parts have been explained in comments. I shall focus on the following

� P GET STR is defined like so

1 #de f i n e P GET STR(var) FStr ing var ;
Stack . Step (Stack . Object , &var) ;

#de f i n e P GET INT(var) INT var=0;
Stack . Step (Stack . Object , &var) ;

https://github.com/ravimohan1991/ChatDiamond/blob/5592fef2b13305e441c1dd2b09dde7dd52ff2d83/UTNativeEssentials/ChatDiamond/Src/ChatDiamondNative.cpp#L43
https://github.com/ravimohan1991/ChatDiamond/blob/5592fef2b13305e441c1dd2b09dde7dd52ff2d83/UTNativeEssentials/Core/Inc/UnScript.h#L63

A MESSAGING TABLES 21

is used for collecting the arguments of our uscript function TestFunction(string
S, int I) and order is indespensible.

� P FINISH is defined like so

#de f i n e P FINISH Stack . Code++;

A Messaging Tables

Console
Owner
State

Death
Messages

14

Server
Announcements15

Talk
TeamTalk

Multiplayer
Spectator plushie was

smacked down
by MI’s

Rocket Launcher

Type !cg to
visit combogib
grapple server A: Self Sent-

RN16:Hola

B. By Player-
RN:SN17:Hola

C. By spectator18

SN:Hola

Table 1: Table of Messages.

B Aggregation

In C++, aggregation is a process in which one class defines another class as any
entity reference. It is another way to reuse the class. It is a form of association
that represents HAS-A relationship.

1 c l a s s Address
{

3 pub l i c :
s t r i n g addressL ine ;

5 Address (s t r i n g addressL ine)
{

7 th i s=>addressL ine = addressL ine ;
}

9 } ;
c l a s s Employee

11 {
pr i va t e :

B AGGREGATION 22

Console
Owner
State

Death
Messages

19

Server
Announcements20

Talk
TeamTalk

Multiplayer
Spectator

MessageType:
DeathMessage?

PRI: Local?

MessageType:
Event

PRI: Local

A.
MessageType:

Event
PRI: Local

B.
MessageType:

Event
PRI: local

C.
MessageType:

Event
PRI: Local

Multiplayer
Player

Message Type:
Event

PRI: Local?

Message Type:
Event

PRI: None

A.
MessageType:

Say
PRI: Local

B.
MessageType:

Say
PRI: SenderPRI

C.
MessageType:

?
PRI: ?

Table 2: Table of argument types.

C #PRAGMA PACK 23

13 Address* address ; //Employee HAS=A Address

15 pub l i c :
i n t id ;

17 Employee (i n t id , Address* address)
{

19 th i s=>id = id ;
th i s=>address = address ;

21 }
void d i sp l ay ()

23 {
cout<<id <<”\n” ;

25 address=>addressL ine ;
}

27 } ;

In the code above, line 13 is the example of aggregate member address.

C #pragma pack

First a definition

Definition C.1. Natural alignment roughly means data’s memory address is
multiple of data size.

For instance, in a 32-bit architecture, the data may be aligned if the data
is stored in four consecutive bytes and the first byte lies on a 4-byte boundary.
Thus if there is a class like so

1 c l a s s Test
{

3 char a ;
i n t b ;

5 } ;

then, if natural alignment is done (say 32 bit, or x86, architecture), the size
of Test would be 8 bytes with the following breakdown

� 1 char byte + 3 bytes of padding

� 4 bytes for int

	Introduction
	Chat Window
	Emoji Window
	Console Window
	Configure Window
	More Pages

	Installation
	Version Histroy
	A note on UT Messaging
	A minor PhD on console messages

	Native Coding
	Why Native Code?
	Build System
	UT and CMake

	C++ for UT

	Messaging Tables
	Aggregation
	#pragma pack

